Peano
riemannsolverDynamicRupture.h
Go to the documentation of this file.
1 #pragma once
2 
3 #include "../Curvilinear/ContextDynamicRupture.h"
4 #include "riemannsolverPML.h"
5 #include "dynamicRupture.h"
6 
7 template <class Shortcuts, int basisSize, int numberOfVariables, int numberOfParameters, typename T>
9  T* FL, T* FR,
10  const T* const QL, const T* const QR,
11  const double t, const double dt,
12  const tarch::la::Vector<DIMENSIONS, double>& cellSize,
13  const int direction,
14  bool isBoundaryFace,
15  int faceIndex,
16  int surface
17 ){
18  constexpr int numberOfData = numberOfVariables+numberOfParameters;
19  // constexpr int basisSize = order+1;
20 
21  ::kernels::idx3 idx_QLR(basisSize,basisSize,numberOfData);
22  ::kernels::idx3 idx_FLR(basisSize,basisSize,numberOfVariables);
23 
24  //Checking whether the face is on a fault
25  int level = std::round(log(domainSize[0]/cellSize[0])/log(3.)) + 1;
26 
27  int elt_z = int(std::round( (QL[idx_QLR(0,0,Shortcuts::curve_grid+2)] -
28  this->domainOffset[2])/ this->max_dx)) * basisSize;
29  int elt_y = int(std::round((QL[idx_QLR(0,0,Shortcuts::curve_grid+1)] -
30  this->domainOffset[1])/ this->max_dx)) * basisSize;
31 
32  bool is_fault = (direction == 0);
33 
34  toolbox::curvi::Root* root = this->interface->getRoot();
35  toolbox::curvi::InnerNode* fault_node = static_cast<toolbox::curvi::InnerNode*>(root->getChild());
36 
37  toolbox::curvi::Coordinate fault_coords[2];
38  fault_node->getCoordinates(fault_coords);
39  toolbox::curvi::Coordinate fault_normal = fault_node->getFaceNormal();
40  T position = fault_node->getPosition();
41 
42  for (int i = 0; i < basisSize; i++) {
43  for (int j = 0; j < basisSize; j++) {
44  T eta = QL[idx_QLR(i,j,Shortcuts::curve_grid + (2-fault_normal))];
45  T xi = QL[idx_QLR(i,j,Shortcuts::curve_grid + (2-fault_coords[0]))];
46  T mu = QL[idx_QLR(i,j,Shortcuts::curve_grid + (2-fault_coords[1]))];
47 
48  T per_position = position + fault_node->evalPerturbation(xi,mu);
49 
50  is_fault = is_fault && (std::abs(eta - per_position) < cellSize[2-fault_normal] * 0.5);
51  }
52  }
53 
54  T FLn ,FLm ,FLl ,FRn ,FRm ,FRl;
55  T FLx ,FLy ,FLz ,FRx ,FRy ,FRz;
56  T FL_n,FL_m,FL_l,FR_n,FR_m,FR_l;
57  T FL_x,FL_y,FL_z,FR_x,FR_y,FR_z;
58 
59  for (int i = 0; i < basisSize; i++) {
60  for (int j = 0; j < basisSize; j++) {
61 
62  const T* Q_m = QL+idx_QLR(i,j,0);
63  const T* Q_p = QR+idx_QLR(i,j,0);
64 
65  T* F_m = FL + idx_FLR(i,j,0);
66  T* F_p = FR + idx_FLR(i,j,0);
67  T rho_m,cp_m,cs_m,mu_m,lam_m;
68  T rho_p,cp_p,cs_p,mu_p,lam_p;
69 
70  ::Numerics::computeParameters<Shortcuts>(Q_m,rho_m,cp_m,cs_m,mu_m,lam_m);
71  ::Numerics::computeParameters<Shortcuts>(Q_p,rho_p,cp_p,cs_p,mu_p,lam_p);
72 
73  T n_m[3],m_m[3],l_m[3];
74  T n_p[3],m_p[3],l_p[3];
75  T norm_p,norm_m;
76 
77  ::Numerics::getNormals<Shortcuts>(Q_m,direction,norm_m,n_m);
78  ::Numerics::getNormals<Shortcuts>(Q_p,direction,norm_p,n_p);
79 
80  T Tx_m,Ty_m,Tz_m;
81  T Tx_p,Ty_p,Tz_p;
82  ::Numerics::computeTractions<Shortcuts>(Q_p,n_p,Tx_p,Ty_p,Tz_p);
83  ::Numerics::computeTractions<Shortcuts>(Q_m,n_m,Tx_m,Ty_m,Tz_m);
84 
85  T vx_m,vy_m,vz_m;
86  T vx_p,vy_p,vz_p;
87  ::Numerics::getVelocities<Shortcuts>(Q_p,vx_p,vy_p,vz_p);
88  ::Numerics::getVelocities<Shortcuts>(Q_m,vx_m,vy_m,vz_m);
89 
90  ::Numerics::createLocalBasis(n_p, m_p, l_p);
91  ::Numerics::createLocalBasis(n_m, m_m, l_m);
92 
93  T Tn_m,Tm_m,Tl_m;
94  T Tn_p,Tm_p,Tl_p;
95 
96  // rotate fields into l, m, n basis
97  ::Numerics::rotateIntoOrthogonalBasis(n_m,m_m,l_m,Tx_m,Ty_m,Tz_m,Tn_m,Tm_m,Tl_m);
98  ::Numerics::rotateIntoOrthogonalBasis(n_p,m_p,l_p,Tx_p,Ty_p,Tz_p,Tn_p,Tm_p,Tl_p);
99 
100  T vn_m,vm_m,vl_m;
101  T vn_p,vm_p,vl_p;
102  ::Numerics::rotateIntoOrthogonalBasis(n_m,m_m,l_m,vx_m,vy_m,vz_m,vn_m,vm_m,vl_m);
103  ::Numerics::rotateIntoOrthogonalBasis(n_p,m_p,l_p,vx_p,vy_p,vz_p,vn_p,vm_p,vl_p);
104 
105 
106  // extract local s-wave and p-wave impedances
107  T zs_m=rho_m*cs_m;
108  T zs_p=rho_p*cs_p;
109 
110  T zp_m=rho_m*cp_m;
111  T zp_p=rho_p*cp_p;
112 
113  // impedance must be greater than zero !
114  assertion3(!(zp_p <= 0.0 || zp_m <= 0.0),"Impedance must be greater than zero !",zp_p,zs_p);
115 
116  // generate interface data preserving the amplitude of the outgoing charactertritics
117  // and satisfying interface conditions exactly.
118  T vn_hat_p,vm_hat_p,vl_hat_p;
119  T Tn_hat_p,Tm_hat_p,Tl_hat_p;
120  T vn_hat_m,vm_hat_m,vl_hat_m;
121  T Tn_hat_m,Tm_hat_m,Tl_hat_m;
122 
123  if(is_fault){
124 
125  T Sn_m,Sm_m,Sl_m,Sn_p,Sm_p,Sl_p;
126  T Sx_m,Sy_m,Sz_m,Sx_p,Sy_p,Sz_p;
127 
128  double x[3] = {QR[idx_QLR(i,j,Shortcuts::curve_grid + 0)],
129  QR[idx_QLR(i,j,Shortcuts::curve_grid + 1)],
130  QR[idx_QLR(i,j,Shortcuts::curve_grid + 2)]};
131 
132  Sx_p = QR[idx_QLR(i,j,Shortcuts::u + 0)];
133  Sy_p = QR[idx_QLR(i,j,Shortcuts::u + 1)];
134  Sz_p = QR[idx_QLR(i,j,Shortcuts::u + 2)];
135 
136  Sx_m = QL[idx_QLR(i,j,Shortcuts::u + 0)];
137  Sy_m = QL[idx_QLR(i,j,Shortcuts::u + 1)];
138  Sz_m = QL[idx_QLR(i,j,Shortcuts::u + 2)];
139 
140  // tarch::la::Vector<3,double> coords;
141  double coords[3] = {
142  QL[idx_QLR(i,j,Shortcuts::curve_grid + 0 )],
143  QL[idx_QLR(i,j,Shortcuts::curve_grid + 1 )],
144  QL[idx_QLR(i,j,Shortcuts::curve_grid + 2 )]
145  };
146 
147  ::Numerics::rotateIntoOrthogonalBasis(n_m, m_m, l_m, Sx_m, Sy_m, Sz_m, Sn_m, Sm_m, Sl_m);
148  ::Numerics::rotateIntoOrthogonalBasis(n_p, m_p, l_p, Sx_p, Sy_p, Sz_p, Sn_p, Sm_p, Sl_p);
149 
150  T S = std::sqrt((Sl_p- Sl_m)*(Sl_p- Sl_m)+(Sm_p- Sm_m)*(Sm_p- Sm_m));
151 
152  slipWeakeningFriction(
153  vn_p,vn_m, Tn_p,Tn_m, zp_p , zp_m, vn_hat_p , vn_hat_m, Tn_hat_p,Tn_hat_m, vm_p,vm_m,
154  Tm_p,Tm_m, zs_p,zs_m, vm_hat_p, vm_hat_m, Tm_hat_p,Tm_hat_m, vl_p,vl_m,Tl_p,Tl_m, zs_p,
155  zs_m, vl_hat_p , vl_hat_m, Tl_hat_p,Tl_hat_m, l_p, m_p, n_p,
156  // coords.data(),
157  coords,
158  S, t
159  );
160 
161  }
162  else if (isBoundaryFace) {
163  // 0 absorbing 1 free surface
164  T r= faceIndex == surface ? 1 : 0;
165 
167  vn_m,vm_m,vl_m,
168  Tn_m,Tm_m,Tl_m,
169  zp_m,zs_m,
170  vn_hat_m,vm_hat_m,vl_hat_m,
171  Tn_hat_m,Tm_hat_m,Tl_hat_m);
173  vn_p,vm_p,vl_p,
174  Tn_p,Tm_p,Tl_p,
175  zp_p,zs_p,
176  vn_hat_p,vm_hat_p,vl_hat_p,
177  Tn_hat_p,Tm_hat_p,Tl_hat_p);
178  }
179  else {
181  Tn_p, Tn_m,
182  zp_p , zp_m,
183  vn_hat_p , vn_hat_m,
184  Tn_hat_p, Tn_hat_m);
186  Tm_p, Tm_m,
187  zs_p , zs_m,
188  vm_hat_p , vm_hat_m,
189  Tm_hat_p, Tm_hat_m);
191  Tl_p, Tl_m,
192  zs_p , zs_m,
193  vl_hat_p , vl_hat_m,
194  Tl_hat_p, Tl_hat_m);
195  }
196 
197  //generate fluctuations in the local basis coordinates: n, m, l
199  Tn_m,Tn_hat_m,
200  vn_m,vn_hat_m,
201  FLn);
203  Tm_m,Tm_hat_m,
204  vm_m,vm_hat_m,
205  FLm);
207  Tl_m,Tl_hat_m,
208  vl_m,vl_hat_m,
209  FLl);
210 
212  Tn_p,Tn_hat_p,
213  vn_p,vn_hat_p,
214  FRn);
216  Tm_p,Tm_hat_p,
217  vm_p,vm_hat_p,
218  FRm);
220  Tl_p,Tl_hat_p,
221  vl_p,vl_hat_p,
222  FRl);
223 
224  //Consider acoustic boundary
225  FL_n = FLn/zp_m;
226  if(zs_m > 0){
227  FL_m = FLm/zs_m;
228  FL_l = FLl/zs_m;
229  }else{
230  FL_m=0;
231  FL_l=0;
232  }
233 
234  FR_n = FRn/zp_p;
235  if(zs_p > 0){
236  FR_m = FRm/zs_p;
237  FR_l = FRl/zs_p;
238  }else{
239  FR_m=0;
240  FR_l=0;
241  }
242 
243  // rotate back to the physical coordinates x, y, z
245  FLn,FLm,FLl,
246  FLx,FLy,FLz);
248  FRn,FRm,FRl,
249  FRx,FRy,FRz);
251  FL_n,FL_m,FL_l,
252  FL_x,FL_y,FL_z);
254  FR_n,FR_m,FR_l,
255  FR_x,FR_y,FR_z);
256 
257  // construct flux fluctuation vectors obeying the eigen structure of the PDE
258  // and choose physically motivated penalties such that we can prove
259  // numerical stability.
260 
261  F_p[Shortcuts::v + 0] = norm_p/rho_p*FRx;
262  F_m[Shortcuts::v + 0] = norm_m/rho_m*FLx;
263 
264  F_p[Shortcuts::v + 1] = norm_p/rho_p*FRy;
265  F_m[Shortcuts::v + 1] = norm_m/rho_m*FLy;
266 
267  F_p[Shortcuts::v + 2] = norm_p/rho_p*FRz;
268  F_m[Shortcuts::v + 2] = norm_m/rho_m*FLz;
269 
270  F_m[Shortcuts::sigma + 0] = norm_m*((2*mu_m+lam_m)*n_m[0]*FL_x+lam_m*n_m[1]*FL_y+lam_m*n_m[2]*FL_z);
271  F_m[Shortcuts::sigma + 1] = norm_m*((2*mu_m+lam_m)*n_m[1]*FL_y+lam_m*n_m[0]*FL_x+lam_m*n_m[2]*FL_z);
272  F_m[Shortcuts::sigma + 2] = norm_m*((2*mu_m+lam_m)*n_m[2]*FL_z+lam_m*n_m[0]*FL_x+lam_m*n_m[1]*FL_y);
273 
274  F_p[Shortcuts::sigma + 0] = -norm_p*((2*mu_p+lam_p)*n_p[0]*FR_x+lam_p*n_p[1]*FR_y+lam_p*n_p[2]*FR_z);
275  F_p[Shortcuts::sigma + 1] = -norm_p*((2*mu_p+lam_p)*n_p[1]*FR_y+lam_p*n_p[0]*FR_x+lam_p*n_p[2]*FR_z);
276  F_p[Shortcuts::sigma + 2] = -norm_p*((2*mu_p+lam_p)*n_p[2]*FR_z+lam_p*n_p[0]*FR_x+lam_p*n_p[1]*FR_y);
277 
278  F_m[Shortcuts::sigma + 3] = norm_m*mu_m*(n_m[1]*FL_x + n_m[0]*FL_y);
279  F_m[Shortcuts::sigma + 4] = norm_m*mu_m*(n_m[2]*FL_x + n_m[0]*FL_z);
280  F_m[Shortcuts::sigma + 5] = norm_m*mu_m*(n_m[2]*FL_y + n_m[1]*FL_z);
281 
282  F_p[Shortcuts::sigma + 3] = -norm_p*mu_p*(n_p[1]*FR_x + n_p[0]*FR_y);
283  F_p[Shortcuts::sigma + 4] = -norm_p*mu_p*(n_p[2]*FR_x + n_p[0]*FR_z);
284  F_p[Shortcuts::sigma + 5] = -norm_p*mu_p*(n_p[2]*FR_y + n_p[1]*FR_z);
285 
286  F_m[Shortcuts::u + 0] = 0;
287  F_m[Shortcuts::u + 1] = 0;
288  F_m[Shortcuts::u + 2] = 0;
289 
290  F_p[Shortcuts::u + 0] = 0;
291  F_p[Shortcuts::u + 1] = 0;
292  F_p[Shortcuts::u + 2] = 0;
293 
294  T norm_p_qr=norm_p;
295  T norm_m_qr=norm_m;
296 
297  }
298  }
299 }
const tarch::la::Vector< DIMENSIONS, double > cellSize
void riemannSolver(T *FL, T *FR, const T *const QL, const T *const QR, const double t, const double dt, const tarch::la::Vector< DIMENSIONS, double > &cellSize, const int direction, bool isBoundaryFace, int faceIndex, int surface=2)
void computeFluctuationsLeft(T z, T myT, T T_hat, T v, T v_hat, T &F)
void riemannSolverBoundary(int faceIndex, double r, double vn, double vm, double vl, double Tn, double Tm, double Tl, double zp, double zs[2], double &vn_hat, double &vm_hat, double &vl_hat, double &Tn_hat, double &Tm_hat, double &Tl_hat)
void rotateIntoOrthogonalBasis(T *n, T *m, T *l, T Tx, T Ty, T Tz, T &Tn, T &Tm, T &Tl)
void riemannSolverNodal(T v_p, T v_m, T sigma_p, T sigma_m, T z_p, T z_m, T &v_hat_p, T &v_hat_m, T &sigma_hat_p, T &sigma_hat_m)
void createLocalBasis(T *n, T *m, T *l)
void computeFluctuationsRight(T z, T myT, T T_hat, T v, T v_hat, T &F)
void rotateIntoPhysicalBasis(T *n, T *m, T *l, T Fn, T Fm, T Fl, T &Fx, T &Fy, T &Fz)
u
Definition: euler.py:113
j
Definition: euler.py:95