Peano
Loading...
Searching...
No Matches
Numerics Namespace Reference

Functions

template<class Shortcuts, typename T>
void getNormals (const T *Q, int direction, T &norm, T *n)
template<class Shortcuts>
void getStiffnessTensor (const double *Q, double &c11, double &c22, double &c33, double &c44, double &c55, double &c66, double &c12, double &c13, double &c23)
template<class Shortcuts>
void computeParameters (const double *Q, double &rho, double &cp, double cs[], int direction)
void riemannSolverBoundary (int faceIndex, double r, double vn, double vm, double vl, double Tn, double Tm, double Tl, double zp, double zs[2], double &vn_hat, double &vm_hat, double &vl_hat, double &Tn_hat, double &Tm_hat, double &Tl_hat)
template<class Shortcuts, int order, int numberOfVariables, int numberOfParameters>
void riemannSolver (double *FL, double *FR, const double *const QL, const double *const QR, const double dt, const int direction, bool isBoundaryFace, int faceIndex)
template<class Shortcuts, typename T>
void computeParameters (const T *Q, T &rho, T &cp, T &cs, T &mu, T &lam)
template<typename T>
void riemannSolverBoundary (int faceIndex, T r, T vn, T vm, T vl, T Tn, T Tm, T Tl, T zp, T zs, T &vn_hat, T &vm_hat, T &vl_hat, T &Tn_hat, T &Tm_hat, T &Tl_hat)
template<class Shortcuts, typename T, int basisSize, int numberOfVariables, int numberOfData, int surface = 2>
void riemannSolver (T *FL, T *FR, const T *const QL, const T *const QR, const double dt, const int direction, bool isBoundaryFace, int faceIndex)
template<class Shortcuts, typename T>
void computeTractions (const T *Q, const T *n, T &Tx, T &Ty, T &Tz)
template<class Shortcuts, typename T>
void getVelocities (const T *Q, T &vx, T &vy, T &vz)
template<typename T>
void GramSchmidt (T *y, T *z)
template<typename T>
void createLocalBasis (T *n, T *m, T *l)
template<typename T>
void riemannSolverNodal (T v_p, T v_m, T sigma_p, T sigma_m, T z_p, T z_m, T &v_hat_p, T &v_hat_m, T &sigma_hat_p, T &sigma_hat_m)
template<typename T>
void riemannSolverBC0 (T v, T sigma, T z, T r, T &v_hat, T &sigma_hat)
template<typename T>
void riemannSolverBCn (T v, T sigma, T z, T r, T &v_hat, T &sigma_hat)
template<typename T>
void rotateIntoOrthogonalBasis (T *n, T *m, T *l, T Tx, T Ty, T Tz, T &Tn, T &Tm, T &Tl)
template<typename T>
void rotateIntoPhysicalBasis (T *n, T *m, T *l, T Fn, T Fm, T Fl, T &Fx, T &Fy, T &Fz)
template<typename T>
void computeFluctuationsLeft (T z, T myT, T T_hat, T v, T v_hat, T &F)
template<typename T>
void computeFluctuationsRight (T z, T myT, T T_hat, T v, T v_hat, T &F)

Function Documentation

◆ computeFluctuationsLeft()

template<typename T>
void Numerics::computeFluctuationsLeft ( T z,
T myT,
T T_hat,
T v,
T v_hat,
T & F )

◆ computeFluctuationsRight()

template<typename T>
void Numerics::computeFluctuationsRight ( T z,
T myT,
T T_hat,
T v,
T v_hat,
T & F )

◆ computeParameters() [1/2]

template<class Shortcuts>
void Numerics::computeParameters ( const double * Q,
double & rho,
double & cp,
double cs[],
int direction )

◆ computeParameters() [2/2]

template<class Shortcuts, typename T>
void Numerics::computeParameters ( const T * Q,
T & rho,
T & cp,
T & cs,
T & mu,
T & lam )

Definition at line 10 of file riemannsolverIsotropic.h.

◆ computeTractions()

template<class Shortcuts, typename T>
void Numerics::computeTractions ( const T * Q,
const T * n,
T & Tx,
T & Ty,
T & Tz )

◆ createLocalBasis()

template<typename T>
void Numerics::createLocalBasis ( T * n,
T * m,
T * l )

Definition at line 44 of file riemannsolverRoutines.h.

References GramSchmidt().

Referenced by ContextDynamicRupture< Shortcuts, basisSize, numberOfVariables, numberOfParameters, T >::riemannSolver(), riemannSolver(), and riemannSolver().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ getNormals()

template<class Shortcuts, typename T>
void Numerics::getNormals ( const T * Q,
int direction,
T & norm,
T * n )

◆ getStiffnessTensor()

template<class Shortcuts>
void Numerics::getStiffnessTensor ( const double * Q,
double & c11,
double & c22,
double & c33,
double & c44,
double & c55,
double & c66,
double & c12,
double & c13,
double & c23 )

Definition at line 11 of file riemannsolverAnisotropic.h.

Referenced by riemannSolver().

Here is the caller graph for this function:

◆ getVelocities()

template<class Shortcuts, typename T>
void Numerics::getVelocities ( const T * Q,
T & vx,
T & vy,
T & vz )

◆ GramSchmidt()

template<typename T>
void Numerics::GramSchmidt ( T * y,
T * z )

Definition at line 29 of file riemannsolverRoutines.h.

Referenced by createLocalBasis().

Here is the caller graph for this function:

◆ riemannSolver() [1/2]

template<class Shortcuts, int order, int numberOfVariables, int numberOfParameters>
void Numerics::riemannSolver ( double * FL,
double * FR,
const double *const QL,
const double *const QR,
const double dt,
const int direction,
bool isBoundaryFace,
int faceIndex )

◆ riemannSolver() [2/2]

template<class Shortcuts, typename T, int basisSize, int numberOfVariables, int numberOfData, int surface = 2>
void Numerics::riemannSolver ( T * FL,
T * FR,
const T *const QL,
const T *const QR,
const double dt,
const int direction,
bool isBoundaryFace,
int faceIndex )

◆ riemannSolverBC0()

template<typename T>
void Numerics::riemannSolverBC0 ( T v,
T sigma,
T z,
T r,
T & v_hat,
T & sigma_hat )

Definition at line 129 of file riemannsolverRoutines.h.

Referenced by riemannSolverBoundary(), and riemannSolverBoundary().

Here is the caller graph for this function:

◆ riemannSolverBCn()

template<typename T>
void Numerics::riemannSolverBCn ( T v,
T sigma,
T z,
T r,
T & v_hat,
T & sigma_hat )

Definition at line 141 of file riemannsolverRoutines.h.

Referenced by riemannSolverBoundary(), and riemannSolverBoundary().

Here is the caller graph for this function:

◆ riemannSolverBoundary() [1/2]

void Numerics::riemannSolverBoundary ( int faceIndex,
double r,
double vn,
double vm,
double vl,
double Tn,
double Tm,
double Tl,
double zp,
double zs[2],
double & vn_hat,
double & vm_hat,
double & vl_hat,
double & Tn_hat,
double & Tm_hat,
double & Tl_hat )

Definition at line 49 of file riemannsolverAnisotropic.h.

References riemannSolverBC0(), and riemannSolverBCn().

Referenced by ContextDynamicRupture< Shortcuts, basisSize, numberOfVariables, numberOfParameters, T >::riemannSolver(), riemannSolver(), and riemannSolver().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ riemannSolverBoundary() [2/2]

template<typename T>
void Numerics::riemannSolverBoundary ( int faceIndex,
T r,
T vn,
T vm,
T vl,
T Tn,
T Tm,
T Tl,
T zp,
T zs,
T & vn_hat,
T & vm_hat,
T & vl_hat,
T & Tn_hat,
T & Tm_hat,
T & Tl_hat )

Definition at line 19 of file riemannsolverIsotropic.h.

References riemannSolverBC0(), and riemannSolverBCn().

Here is the call graph for this function:

◆ riemannSolverNodal()

template<typename T>
void Numerics::riemannSolverNodal ( T v_p,
T v_m,
T sigma_p,
T sigma_m,
T z_p,
T z_m,
T & v_hat_p,
T & v_hat_m,
T & sigma_hat_p,
T & sigma_hat_m )

◆ rotateIntoOrthogonalBasis()

template<typename T>
void Numerics::rotateIntoOrthogonalBasis ( T * n,
T * m,
T * l,
T Tx,
T Ty,
T Tz,
T & Tn,
T & Tm,
T & Tl )

◆ rotateIntoPhysicalBasis()

template<typename T>
void Numerics::rotateIntoPhysicalBasis ( T * n,
T * m,
T * l,
T Fn,
T Fm,
T Fl,
T & Fx,
T & Fy,
T & Fz )