![]() |
Peano
|
Functions | |
def | arctan2_2pi (yy, xx) |
def | sph_design (func, t=5, author='Hardin', **kwargs) |
def | gauss_legendre (func, N=40, x_low=0, x_up=pi, **kwargs) |
Gauss-Legendre 1D integration. More... | |
def | trapezoidal (func, N=40, x_low=0, x_up=pi, **kwargs) |
Gauss 1D integration. More... | |
def | prod_quad (func, N=20, M=40, **kwargs) |
Gaussian product quadrature using Trapezoidal for azimuthal direction and Gauss-Legendre for polar angle. More... | |
def | file_len (fname) |
Variables | |
pi = np.pi | |
string | scheme = "t-design" |
main code scheme="Gauss_Legendre" More... | |
string | file_name = "zz.csv" |
f = open(file_name) | |
dat = f.readlines()[1:] | |
int | tstep = 0 |
int | told = 1e6 |
tem = list(map(float,line.split(', '))) | |
tnew = tem[0] | |
int | N_tracer = 0 |
int | ID1 = -100 |
list | coors = [] |
list | coor = [tem[3],tem[4],tem[5]] |
data_set = np.zeros((N_tracer,tstep,7)) | |
int | t_count = 0 |
int | N_count = 0 |
thetas | |
find weight More... | |
ws | |
float | zs = np.cos(np.pi*thetas/2 + np.pi/2)*0.4 |
zip_iterator = zip(zs,ws) | |
w_dict = dict(zip_iterator) | |
int | l_mode = 2; |
ready for mode decomposition remember to add sin(theta) for GL scheme More... | |
x = data_set[n][t][3]; | |
p4re = data_set[n][t][5] | |
tuple | sintheta = z/(x**2+y**2+z**2)**0.5; |
float | sinphi = x/(x**2+y**2)**0.5 |
int | cos2phi = 2*sinphi*cosphi |
ModeRe = np.zeros(tstep) | |
start real surface integral here More... | |
ModeIm = np.zeros(tstep) | |
tuple | w = (1.0/40)*(2*np.pi)*data_set[n][t][6]*(np.pi/2.0) |
def ModeCalc.arctan2_2pi | ( | yy, | |
xx | |||
) |
Definition at line 10 of file ModeCalc.py.
Referenced by sph_design().
def ModeCalc.file_len | ( | fname | ) |
Definition at line 68 of file ModeCalc.py.
def ModeCalc.gauss_legendre | ( | func, | |
N = 40 , |
|||
x_low = 0 , |
|||
x_up = pi , |
|||
** | kwargs | ||
) |
Gauss-Legendre 1D integration.
Definition at line 39 of file ModeCalc.py.
Referenced by prod_quad().
def ModeCalc.prod_quad | ( | func, | |
N = 20 , |
|||
M = 40 , |
|||
** | kwargs | ||
) |
Gaussian product quadrature using Trapezoidal for azimuthal direction and Gauss-Legendre for polar angle.
Definition at line 59 of file ModeCalc.py.
References gauss_legendre(), and trapezoidal().
def ModeCalc.sph_design | ( | func, | |
t = 5 , |
|||
author = 'Hardin' , |
|||
** | kwargs | ||
) |
Definition at line 16 of file ModeCalc.py.
References arctan2_2pi(), and performance_testbed.float.
def ModeCalc.trapezoidal | ( | func, | |
N = 40 , |
|||
x_low = 0 , |
|||
x_up = pi , |
|||
** | kwargs | ||
) |
Gauss 1D integration.
Definition at line 50 of file ModeCalc.py.
Referenced by prod_quad().
Definition at line 114 of file ModeCalc.py.
ModeCalc.coors = [] |
Definition at line 108 of file ModeCalc.py.
int ModeCalc.cos2phi = 2*sinphi*cosphi |
Definition at line 178 of file ModeCalc.py.
ModeCalc.dat = f.readlines()[1:] |
Definition at line 89 of file ModeCalc.py.
Definition at line 121 of file ModeCalc.py.
ModeCalc.f = open(file_name) |
Definition at line 85 of file ModeCalc.py.
string ModeCalc.file_name = "zz.csv" |
Definition at line 81 of file ModeCalc.py.
int ModeCalc.ID1 = -100 |
Definition at line 107 of file ModeCalc.py.
int ModeCalc.l_mode = 2; |
ready for mode decomposition remember to add sin(theta) for GL scheme
Definition at line 169 of file ModeCalc.py.
ModeCalc.ModeIm = np.zeros(tstep) |
Definition at line 191 of file ModeCalc.py.
ModeCalc.ModeRe = np.zeros(tstep) |
start real surface integral here
Definition at line 190 of file ModeCalc.py.
int ModeCalc.N_count = 0 |
Definition at line 125 of file ModeCalc.py.
int ModeCalc.N_tracer = 0 |
Definition at line 106 of file ModeCalc.py.
ModeCalc.p4re = data_set[n][t][5] |
Definition at line 173 of file ModeCalc.py.
ModeCalc.pi = np.pi |
Definition at line 8 of file ModeCalc.py.
string ModeCalc.scheme = "t-design" |
main code scheme="Gauss_Legendre"
Definition at line 77 of file ModeCalc.py.
Definition at line 177 of file ModeCalc.py.
tuple ModeCalc.sintheta = z/(x**2+y**2+z**2)**0.5; |
Definition at line 175 of file ModeCalc.py.
int ModeCalc.t_count = 0 |
Definition at line 124 of file ModeCalc.py.
ModeCalc.tem = list(map(float,line.split(', '))) |
Definition at line 95 of file ModeCalc.py.
ModeCalc.thetas |
find weight
Definition at line 146 of file ModeCalc.py.
ModeCalc.tnew = tem[0] |
Definition at line 96 of file ModeCalc.py.
ModeCalc.told = 1e6 |
Definition at line 93 of file ModeCalc.py.
int ModeCalc.tstep = 0 |
Definition at line 92 of file ModeCalc.py.
tuple ModeCalc.w = (1.0/40)*(2*np.pi)*data_set[n][t][6]*(np.pi/2.0) |
Definition at line 195 of file ModeCalc.py.
Referenced by riemannSolver.boxcar(), ContextDynamicRupture< Shortcuts, basisSize, numberOfVariables, numberOfParameters, T >.boxcar(), and TP::Utilities.scalarproduct().
ModeCalc.w_dict = dict(zip_iterator) |
Definition at line 149 of file ModeCalc.py.
ModeCalc.ws |
Definition at line 146 of file ModeCalc.py.
Referenced by getLastLine().
ModeCalc.x = data_set[n][t][3]; |
Definition at line 172 of file ModeCalc.py.
Referenced by examples::exahype2::mgccz4::ADERDGMGCCZ4.adjustSolution(), airfoilSymmetric(), examples::exahype2::mgccz4::ADERDGMGCCZ4.algebraicSource(), examples::regulargridupscaling::MyObserver.beginTraversal(), examples::exahype2::mgccz4::ADERDGMGCCZ4.boundaryConditions(), riemannSolver.boxcar(), ContextDynamicRupture< Shortcuts, basisSize, numberOfVariables, numberOfParameters, T >.boxcar(), TP::TwoPunctures.BY_Aijofxyz(), TP::TwoPunctures.BY_KKofxyz(), TP::TwoPunctures.C_To_c(), TP::Utilities.chebev(), ConsReadIn(), CoorReadIn(), applications::exahype2::ccz4.diagonal_gaugeWave(), ellipsoidTransform(), ellipsoidTransformInverse(), examples::regulargridupscaling::MyObserver.endTraversal(), TP::TwoPunctures.F_of_v(), FindInterIndex(), examples::exahype2::mgccz4.forcedflat(), projection::albers_equal_area::ellipsoid.forward(), projection::albers_equal_area::sphere.forward(), TP::Utilities.fourev(), TP::Utilities.fourft(), applications::exahype2::ccz4.gaugeWave(), examples::exahype2::mgccz4.gaugeWave(), ContextDynamicRupture< Shortcuts, basisSize, numberOfVariables, numberOfParameters, T >.initialStressTensor(), TP::TwoPunctures.Interpolate(), projection::albers_equal_area::ellipsoid.inverse(), projection::albers_equal_area::sphere.inverse(), invokeFVSolverBoundaryConditions(), TP::TwoPunctures.J_times_dv(), TP::TwoPunctures.JFD_times_dv(), TP::TwoPunctures.LinEquations(), TP::TwoPunctures.LineRelax_al(), TP::TwoPunctures.LineRelax_be(), main(), TP.min(), examples::exahype2::mgccz4::ADERDGMGCCZ4.nonconservativeProduct(), TP::TwoPunctures.NonLinEquations(), math::differentiation::numeric_3D::central_difference.partialT(), math::differentiation::numeric_3D::central_difference.partialX(), math::differentiation::numeric_3D::central_difference.partialY(), riemannSolver.prestress(), ContextDynamicRupture< Shortcuts, basisSize, numberOfVariables, numberOfParameters, T >.preStress(), TP::TwoPunctures.PunctIntPolAtArbitPosition(), TP::TwoPunctures.PunctIntPolAtArbitPositionFast(), TP::TwoPunctures.PunctTaylorExpandAtArbitPosition(), applications::exahype2::ccz4.recomputeAuxiliaryVariablesFD4_4thOrder(), TP.recurrence(), ContextDynamicRupture< Shortcuts, basisSize, numberOfVariables, numberOfParameters, T >.riemannSolver(), riemannSolver.SlipWeakeningFriction(), ContextDynamicRupture< Shortcuts, basisSize, numberOfVariables, numberOfParameters, T >.slipWeakeningFriction(), examples::exahype2::mgccz4::FiniteVolumeMGCCZ4.sourceTerm(), sphereTransform(), sphereTransformInverse(), riemannSolver.TauStrength(), and ContextDynamicRupture< Shortcuts, basisSize, numberOfVariables, numberOfParameters, T >.tauStrength().
Definition at line 148 of file ModeCalc.py.
float ModeCalc.zs = np.cos(np.pi*thetas/2 + np.pi/2)*0.4 |