![]() |
Peano
|
Variables | |
list | domain_size = [120.0, 120.0] |
list | domain_offset = [-10.0, -60.0] |
int | min_level = 5 |
dictionary | unknowns = {"p": 1, "v": 2, "E": 1} |
dictionary | auxiliary_variables = {} |
float | max_h = 1.1 * min(domain_size) / (3.0**min_level) |
float | min_h = max_h |
my_solver | |
initial_conditions | |
boundary_conditions | |
flux | |
exahype2_project | |
dimensions = 2 | |
size = [1.0, 1.0, 1.0] | |
offset = [0.0, 0.0, 0.0] | |
min_end_time | |
max_end_time | |
first_plot_time_stamp | |
time_in_between_plots | |
periodic_BC | |
peano4_project = exahype2_project.generate_Peano4_project() | |
make | |
True | |
make_clean_first | |
False | |
throw_away_data_after_build | |
int | patch_size = 16 |
int | depth = 5 |
float | end_time = 1.0 |
float | time_in_between_two_snapshots = end_time / 10 |
string | compile_mode = "Release" |
my_project | |
my_pde | |
gamma = sympy.symbols("gamma") | |
rho = my_pde.name_Q_entry(0, "rho") | |
j = my_pde.name_Q_entries(1, dimensions, "j") | |
E = my_pde.name_Q_entry(dimensions + 1, "E") | |
tuple | p = (gamma - 1) * (E - 1 / 2 * symhype.dot(j, j) / rho) |
c = sympy.sqrt(gamma * p / rho) | |
u = j / rho | |
volume_centre = sympy.sqrt((0.5 - my_pde.x[0]) ** 2 + (0.5 - my_pde.x[1]) ** 2) | |
max_eigenvalue | |
plot_description | |
mode | |
euler.E = my_pde.name_Q_entry(dimensions + 1, "E") |
euler.exahype2_project |
euler.j = my_pde.name_Q_entries(1, dimensions, "j") |
Definition at line 95 of file euler.py.
Referenced by examples::exahype2::mgccz4.admconstraints(), applications::exahype2::ccz4.admconstraints(), TP_bindding.AuxiliaryCal(), TP::TwoPunctures.bicgstab(), TP::TwoPunctures.BY_Aijofxyz(), TP::TwoPunctures.BY_KKofxyz(), TP::TwoPunctures.calculate_derivs(), TP::Utilities.chder(), TP::Utilities.chebev(), TP::Utilities.chebft_Extremes(), TP::Utilities.chebft_Zeros(), ExaSeis::Derivatives< Shortcuts, T, num_nodes, numberOfData >.computeDerivatives_x_3D(), ExaSeis::Derivatives< Shortcuts, T, num_nodes, numberOfData >.computeDerivatives_y_3D(), ExaSeis::Derivatives< Shortcuts, T, num_nodes, numberOfData >.computeDerivatives_z_3D(), ContextCurvilinear< Shortcuts, basisSize, numberOfData, T >.ContextCurvilinear(), TP::Utilities.d3tensor(), TP::TwoPunctures.Derivatives_AB3(), examples::exahype2::mgccz4.enforceMGCCZ4constraints(), TP::TwoPunctures.F_of_v(), FindInterIndex(), ContextCurvilinear< Shortcuts, basisSize, numberOfData, T >.getElementSize(), TP::TwoPunctures.Index(), ContextCurvilinear< Shortcuts, basisSize, numberOfData, T >.initUnknownsPatch(), Interpolation(), TP::TwoPunctures.J_times_dv(), TP::TwoPunctures.JFD_times_dv(), TP::TwoPunctures.LineRelax_al(), TP::TwoPunctures.LineRelax_be(), TP::Utilities.maximum2(), TP::Utilities.maximum3(), ExaSeis::Derivatives< Shortcuts, T, num_nodes, numberOfData >.metricDerivatives(), TP::Utilities.minimum2(), TP::Utilities.minimum3(), examples::exahype2::mgccz4.ncp(), TP::TwoPunctures.Newton(), TP::TwoPunctures.norm_inf(), kernels::idx2.operator()(), kernels::idx3.operator()(), kernels::idx4.operator()(), kernels::idx5.operator()(), applications::exahype2::ccz4.Psi4Calc(), TP::TwoPunctures.PunctEvalAtArbitPosition(), TP::TwoPunctures.PunctEvalAtArbitPositionFast(), TP::TwoPunctures.PunctEvalAtArbitPositionFaster(), TP::TwoPunctures.PunctEvalAtArbitPositionFasterLowRes(), TP::TwoPunctures.PunctTaylorExpandAtArbitPosition(), applications::exahype2::ccz4::internal.recomputeAuxiliaryVariablesFD4_4thOrder_LoopBody(), applications::exahype2::ccz4::internal.recomputeAuxiliaryVariablesFD4_centralDifferences_LoopBody(), applications::exahype2::ccz4::internal.recomputeAuxiliaryVariablesFD4_leftDifferences_LoopBody(), applications::exahype2::ccz4::internal.recomputeAuxiliaryVariablesFD4_rightDifferences_LoopBody(), TP::TwoPunctures.relax(), kernels::idx2.rev(), Numerics.riemannSolver(), ContextDynamicRupture< Shortcuts, basisSize, numberOfVariables, numberOfParameters, T >.riemannSolver(), TP::TwoPunctures.Run(), TP::TwoPunctures.set_initial_guess(), TP::TwoPunctures.SetMatrix_JFD(), TP_bindding.SOCCZ4Cal(), examples::exahype2::mgccz4.source(), TP::TwoPunctures.SpecCoef(), applications::exahype2::ccz4.TestingOutput(), TP::TwoPunctures.TestRelax(), and applications::exahype2::ccz4.ThetaOutputNCP().
float euler.max_h = 1.1 * min(domain_size) / (3.0**min_level) |
euler.my_pde |
euler.my_project |
euler.my_solver |
list euler.offset = [0.0, 0.0, 0.0] |
Definition at line 45 of file euler.py.
Referenced by ContextCurvilinear< Shortcuts, basisSize, numberOfData, T >.ContextCurvilinear().
euler.peano4_project = exahype2_project.generate_Peano4_project() |
list euler.size = [1.0, 1.0, 1.0] |
Definition at line 44 of file euler.py.
Referenced by ContextCurvilinear< Shortcuts, basisSize, numberOfData, T >.ContextCurvilinear(), runParallel(), and vformat().
Definition at line 113 of file euler.py.
Referenced by examples::exahype2::mgccz4.admconstraints(), applications::exahype2::ccz4.admconstraints(), TP::TwoPunctures.bicgstab(), TP::Utilities.chebft_Extremes(), TP::Utilities.chebft_Zeros(), TP::TwoPunctures.F_of_v(), TP::Utilities.fourder(), TP::Utilities.fourder2(), TP::Utilities.fourev(), TP::Utilities.fourft(), TP::TwoPunctures.Interpolate(), TP::TwoPunctures.J_times_dv(), TP::TwoPunctures.JFD_times_dv(), examples::exahype2::mgccz4.ncp(), TP::TwoPunctures.Newton(), ContextDynamicRupture< Shortcuts, basisSize, numberOfVariables, numberOfParameters, T >.riemannSolver(), TP::TwoPunctures.Run(), TP::TwoPunctures.SetMatrix_JFD(), examples::exahype2::mgccz4.source(), applications::exahype2::ccz4.TestingOutput(), TP::TwoPunctures.TestRelax(), and applications::exahype2::ccz4.ThetaOutputNCP().
dictionary euler.unknowns = {"p": 1, "v": 2, "E": 1} |
Definition at line 11 of file euler.py.
Referenced by applications::exahype2::ccz4.recomputeAuxiliaryVariablesFD4_4thOrder(), applications::exahype2::ccz4.recomputeAuxiliaryVariablesFD4_centralDifferences(), applications::exahype2::ccz4.recomputeAuxiliaryVariablesFD4_leftDifferences(), and applications::exahype2::ccz4.recomputeAuxiliaryVariablesFD4_rightDifferences().