Peano
Loading...
Searching...
No Matches
riemannsolver_slipweakening.h
Go to the documentation of this file.
1#pragma once
2
3#include "../Curvilinear/ContextSlipWeakening.h"
4#include "riemannsolver_pml.h"
5#include "slipweakening.h"
6
7template <class Shortcuts, int basisSize, int numberOfVariables, int numberOfParameters, typename T>
8void ContextSlipWeakening<Shortcuts, basisSize, numberOfVariables, numberOfParameters, T>::riemannSolver(
9 T* FL, T* FR,
10 const T* const QL, const T* const QR,
11 const double t, const double dt,
12 const tarch::la::Vector<DIMENSIONS, double>& cellSize,
13 const int direction,
14 bool isBoundaryFace,
15 int faceIndex,
16 int surface
17){
18
19 using s = Shortcuts;
20
21 constexpr int numberOfData = numberOfVariables+numberOfParameters;
22 // constexpr int basisSize = order+1;
23
24 ::kernels::idx3 idx_QLR(basisSize,basisSize,numberOfData);
25 ::kernels::idx3 idx_FLR(basisSize,basisSize,numberOfVariables);
26
27 //Checking whether the face is on a fault
28 int level = std::round(log(domainSize[0]/cellSize[0])/log(3.)) + 1;
29
30 int elt_z = int(std::round( (QL[idx_QLR(0,0,s::curve_grid+2)] -
31 this->domainOffset[2])/ this->max_dx)) * basisSize;
32 int elt_y = int(std::round((QL[idx_QLR(0,0,s::curve_grid+1)] -
33 this->domainOffset[1])/ this->max_dx)) * basisSize;
34
35 bool is_fault = (direction == 0);
36
37 Root* root = this->interface->getRoot();
38 InnerNode* fault_node = static_cast<InnerNode*>(root->getChild());
39
40 Coordinate fault_coords[2];
41 fault_node->getCoordinates(fault_coords);
42 Coordinate fault_normal = fault_node->getFaceNormal();
43 T position = fault_node->getPosition();
44
45 for (int i = 0; i < basisSize; i++) {
46 for (int j = 0; j < basisSize; j++) {
47 T eta = QL[idx_QLR(i,j,s::curve_grid + (2-fault_normal))];
48 T xi = QL[idx_QLR(i,j,s::curve_grid + (2-fault_coords[0]))];
49 T mu = QL[idx_QLR(i,j,s::curve_grid + (2-fault_coords[1]))];
50
51 T per_position = position + fault_node->evalPerturbation(xi,mu);
52
53 is_fault = is_fault && (std::abs(eta - per_position) < cellSize[2-fault_normal] * 0.5);
54 }
55 }
56
57 T FLn ,FLm ,FLl ,FRn ,FRm ,FRl;
58 T FLx ,FLy ,FLz ,FRx ,FRy ,FRz;
59 T FL_n,FL_m,FL_l,FR_n,FR_m,FR_l;
60 T FL_x,FL_y,FL_z,FR_x,FR_y,FR_z;
61
62 for (int i = 0; i < basisSize; i++) {
63 for (int j = 0; j < basisSize; j++) {
64
65 const T* Q_m = QL+idx_QLR(i,j,0);
66 const T* Q_p = QR+idx_QLR(i,j,0);
67
68 T* F_m = FL + idx_FLR(i,j,0);
69 T* F_p = FR + idx_FLR(i,j,0);
70 T rho_m,cp_m,cs_m,mu_m,lam_m;
71 T rho_p,cp_p,cs_p,mu_p,lam_p;
72
73 ::Numerics::compute_parameters<Shortcuts>(Q_m,rho_m,cp_m,cs_m,mu_m,lam_m);
74 ::Numerics::compute_parameters<Shortcuts>(Q_p,rho_p,cp_p,cs_p,mu_p,lam_p);
75
76 T n_m[3],m_m[3],l_m[3];
77 T n_p[3],m_p[3],l_p[3];
78 T norm_p,norm_m;
79
80 ::Numerics::get_normals<Shortcuts>(Q_m,direction,norm_m,n_m);
81 ::Numerics::get_normals<Shortcuts>(Q_p,direction,norm_p,n_p);
82
83 T Tx_m,Ty_m,Tz_m;
84 T Tx_p,Ty_p,Tz_p;
85 ::Numerics::compute_tractions<Shortcuts>(Q_p,n_p,Tx_p,Ty_p,Tz_p);
86 ::Numerics::compute_tractions<Shortcuts>(Q_m,n_m,Tx_m,Ty_m,Tz_m);
87
88 T vx_m,vy_m,vz_m;
89 T vx_p,vy_p,vz_p;
90 ::Numerics::get_velocities<Shortcuts>(Q_p,vx_p,vy_p,vz_p);
91 ::Numerics::get_velocities<Shortcuts>(Q_m,vx_m,vy_m,vz_m);
92
93 ::Numerics::create_local_basis(n_p, m_p, l_p);
94 ::Numerics::create_local_basis(n_m, m_m, l_m);
95
96 T Tn_m,Tm_m,Tl_m;
97 T Tn_p,Tm_p,Tl_p;
98
99 // rotate fields into l, m, n basis
100 ::Numerics::rotate_into_orthogonal_basis(n_m,m_m,l_m,Tx_m,Ty_m,Tz_m,Tn_m,Tm_m,Tl_m);
101 ::Numerics::rotate_into_orthogonal_basis(n_p,m_p,l_p,Tx_p,Ty_p,Tz_p,Tn_p,Tm_p,Tl_p);
102
103 T vn_m,vm_m,vl_m;
104 T vn_p,vm_p,vl_p;
105 ::Numerics::rotate_into_orthogonal_basis(n_m,m_m,l_m,vx_m,vy_m,vz_m,vn_m,vm_m,vl_m);
106 ::Numerics::rotate_into_orthogonal_basis(n_p,m_p,l_p,vx_p,vy_p,vz_p,vn_p,vm_p,vl_p);
107
108
109 // extract local s-wave and p-wave impedances
110 T zs_m=rho_m*cs_m;
111 T zs_p=rho_p*cs_p;
112
113 T zp_m=rho_m*cp_m;
114 T zp_p=rho_p*cp_p;
115
116 // impedance must be greater than zero !
117 assertion3(!(zp_p <= 0.0 || zp_m <= 0.0),"Impedance must be greater than zero !",zp_p,zs_p);
118
119 // generate interface data preserving the amplitude of the outgoing charactertritics
120 // and satisfying interface conditions exactly.
121 T vn_hat_p,vm_hat_p,vl_hat_p;
122 T Tn_hat_p,Tm_hat_p,Tl_hat_p;
123 T vn_hat_m,vm_hat_m,vl_hat_m;
124 T Tn_hat_m,Tm_hat_m,Tl_hat_m;
125
126 if(is_fault){
127
128 T Sn_m,Sm_m,Sl_m,Sn_p,Sm_p,Sl_p;
129 T Sx_m,Sy_m,Sz_m,Sx_p,Sy_p,Sz_p;
130
131 double x[3] = {QR[idx_QLR(i,j,s::curve_grid + 0)],
132 QR[idx_QLR(i,j,s::curve_grid + 1)],
133 QR[idx_QLR(i,j,s::curve_grid + 2)]};
134
135 Sx_p = QR[idx_QLR(i,j,s::u + 0)];
136 Sy_p = QR[idx_QLR(i,j,s::u + 1)];
137 Sz_p = QR[idx_QLR(i,j,s::u + 2)];
138
139 Sx_m = QL[idx_QLR(i,j,s::u + 0)];
140 Sy_m = QL[idx_QLR(i,j,s::u + 1)];
141 Sz_m = QL[idx_QLR(i,j,s::u + 2)];
142
143 // tarch::la::Vector<3,double> coords;
144 double coords[3] = {
145 QL[idx_QLR(i,j,s::curve_grid + 0 )],
146 QL[idx_QLR(i,j,s::curve_grid + 1 )],
147 QL[idx_QLR(i,j,s::curve_grid + 2 )]
148 };
149
150 ::Numerics::rotate_into_orthogonal_basis(n_m, m_m, l_m, Sx_m, Sy_m, Sz_m, Sn_m, Sm_m, Sl_m);
151 ::Numerics::rotate_into_orthogonal_basis(n_p, m_p, l_p, Sx_p, Sy_p, Sz_p, Sn_p, Sm_p, Sl_p);
152
153 T S = std::sqrt((Sl_p- Sl_m)*(Sl_p- Sl_m)+(Sm_p- Sm_m)*(Sm_p- Sm_m));
154
156 vn_p,vn_m, Tn_p,Tn_m, zp_p , zp_m, vn_hat_p , vn_hat_m, Tn_hat_p,Tn_hat_m, vm_p,vm_m,
157 Tm_p,Tm_m, zs_p,zs_m, vm_hat_p, vm_hat_m, Tm_hat_p,Tm_hat_m, vl_p,vl_m,Tl_p,Tl_m, zs_p,
158 zs_m, vl_hat_p , vl_hat_m, Tl_hat_p,Tl_hat_m, l_p, m_p, n_p,
159 // coords.data(),
160 coords,
161 S, t
162 );
163
164 }
165 else if (isBoundaryFace) {
166 // 0 absorbing 1 free surface
167 T r= faceIndex == surface ? 1 : 0;
168
169 ::Numerics::riemannSolver_boundary(faceIndex,r,
170 vn_m,vm_m,vl_m,
171 Tn_m,Tm_m,Tl_m,
172 zp_m,zs_m,
173 vn_hat_m,vm_hat_m,vl_hat_m,
174 Tn_hat_m,Tm_hat_m,Tl_hat_m);
175 ::Numerics::riemannSolver_boundary(faceIndex,r,
176 vn_p,vm_p,vl_p,
177 Tn_p,Tm_p,Tl_p,
178 zp_p,zs_p,
179 vn_hat_p,vm_hat_p,vl_hat_p,
180 Tn_hat_p,Tm_hat_p,Tl_hat_p);
181 }
182 else {
183 ::Numerics::riemannSolver_Nodal(vn_p, vn_m,
184 Tn_p, Tn_m,
185 zp_p , zp_m,
186 vn_hat_p , vn_hat_m,
187 Tn_hat_p, Tn_hat_m);
188 ::Numerics::riemannSolver_Nodal(vm_p, vm_m,
189 Tm_p, Tm_m,
190 zs_p , zs_m,
191 vm_hat_p , vm_hat_m,
192 Tm_hat_p, Tm_hat_m);
193 ::Numerics::riemannSolver_Nodal(vl_p, vl_m,
194 Tl_p, Tl_m,
195 zs_p , zs_m,
196 vl_hat_p , vl_hat_m,
197 Tl_hat_p, Tl_hat_m);
198 }
199
200 //generate fluctuations in the local basis coordinates: n, m, l
201 ::Numerics::compute_fluctuations_left(zp_m,
202 Tn_m,Tn_hat_m,
203 vn_m,vn_hat_m,
204 FLn);
205 ::Numerics::compute_fluctuations_left(zs_m,
206 Tm_m,Tm_hat_m,
207 vm_m,vm_hat_m,
208 FLm);
209 ::Numerics::compute_fluctuations_left(zs_m,
210 Tl_m,Tl_hat_m,
211 vl_m,vl_hat_m,
212 FLl);
213
214 ::Numerics::compute_fluctuations_right(zp_p,
215 Tn_p,Tn_hat_p,
216 vn_p,vn_hat_p,
217 FRn);
218 ::Numerics::compute_fluctuations_right(zs_p,
219 Tm_p,Tm_hat_p,
220 vm_p,vm_hat_p,
221 FRm);
222 ::Numerics::compute_fluctuations_right(zs_p,
223 Tl_p,Tl_hat_p,
224 vl_p,vl_hat_p,
225 FRl);
226
227 //Consider acoustic boundary
228 FL_n = FLn/zp_m;
229 if(zs_m > 0){
230 FL_m = FLm/zs_m;
231 FL_l = FLl/zs_m;
232 }else{
233 FL_m=0;
234 FL_l=0;
235 }
236
237 FR_n = FRn/zp_p;
238 if(zs_p > 0){
239 FR_m = FRm/zs_p;
240 FR_l = FRl/zs_p;
241 }else{
242 FR_m=0;
243 FR_l=0;
244 }
245
246 // rotate back to the physical coordinates x, y, z
247 ::Numerics::rotate_into_physical_basis(n_m,m_m,l_m,
248 FLn,FLm,FLl,
249 FLx,FLy,FLz);
250 ::Numerics::rotate_into_physical_basis(n_p,m_p,l_p,
251 FRn,FRm,FRl,
252 FRx,FRy,FRz);
253 ::Numerics::rotate_into_physical_basis(n_m,m_m,l_m,
254 FL_n,FL_m,FL_l,
255 FL_x,FL_y,FL_z);
256 ::Numerics::rotate_into_physical_basis(n_p,m_p,l_p,
257 FR_n,FR_m,FR_l,
258 FR_x,FR_y,FR_z);
259
260 // construct flux fluctuation vectors obeying the eigen structure of the PDE
261 // and choose physically motivated penalties such that we can prove
262 // numerical stability.
263
264 F_p[s::v + 0] = norm_p/rho_p*FRx;
265 F_m[s::v + 0] = norm_m/rho_m*FLx;
266
267 F_p[s::v + 1] = norm_p/rho_p*FRy;
268 F_m[s::v + 1] = norm_m/rho_m*FLy;
269
270 F_p[s::v + 2] = norm_p/rho_p*FRz;
271 F_m[s::v + 2] = norm_m/rho_m*FLz;
272
273 F_m[s::sigma + 0] = norm_m*((2*mu_m+lam_m)*n_m[0]*FL_x+lam_m*n_m[1]*FL_y+lam_m*n_m[2]*FL_z);
274 F_m[s::sigma + 1] = norm_m*((2*mu_m+lam_m)*n_m[1]*FL_y+lam_m*n_m[0]*FL_x+lam_m*n_m[2]*FL_z);
275 F_m[s::sigma + 2] = norm_m*((2*mu_m+lam_m)*n_m[2]*FL_z+lam_m*n_m[0]*FL_x+lam_m*n_m[1]*FL_y);
276
277 F_p[s::sigma + 0] = -norm_p*((2*mu_p+lam_p)*n_p[0]*FR_x+lam_p*n_p[1]*FR_y+lam_p*n_p[2]*FR_z);
278 F_p[s::sigma + 1] = -norm_p*((2*mu_p+lam_p)*n_p[1]*FR_y+lam_p*n_p[0]*FR_x+lam_p*n_p[2]*FR_z);
279 F_p[s::sigma + 2] = -norm_p*((2*mu_p+lam_p)*n_p[2]*FR_z+lam_p*n_p[0]*FR_x+lam_p*n_p[1]*FR_y);
280
281 F_m[s::sigma + 3] = norm_m*mu_m*(n_m[1]*FL_x + n_m[0]*FL_y);
282 F_m[s::sigma + 4] = norm_m*mu_m*(n_m[2]*FL_x + n_m[0]*FL_z);
283 F_m[s::sigma + 5] = norm_m*mu_m*(n_m[2]*FL_y + n_m[1]*FL_z);
284
285 F_p[s::sigma + 3] = -norm_p*mu_p*(n_p[1]*FR_x + n_p[0]*FR_y);
286 F_p[s::sigma + 4] = -norm_p*mu_p*(n_p[2]*FR_x + n_p[0]*FR_z);
287 F_p[s::sigma + 5] = -norm_p*mu_p*(n_p[2]*FR_y + n_p[1]*FR_z);
288
289 F_m[s::u + 0] = 0;
290 F_m[s::u + 1] = 0;
291 F_m[s::u + 2] = 0;
292
293 F_p[s::u + 0] = 0;
294 F_p[s::u + 1] = 0;
295 F_p[s::u + 2] = 0;
296
297 T norm_p_qr=norm_p;
298 T norm_m_qr=norm_m;
299
300 }
301 }
302}
const tarch::la::Vector< DIMENSIONS, double > cellSize
j
Definition euler.py:95
void SlipWeakeningFriction(double vn_p, double vn_m, double Tn_p, double Tn_m, double zn_p, double zn_m, double &vn_hat_p, double &vn_hat_m, double &Tn_hat_p, double &Tn_hat_m, double vm_p, double vm_m, double Tm_p, double Tm_m, double zm_p, double zm_m, double &vm_hat_p, double &vm_hat_m, double &Tm_hat_p, double &Tm_hat_m, double *m, double *n, double *x, double S)