Initial value:
2 const double Zeta = 35.0 * tarch::la::PI / 180.0; // Conversion of degrees to radians
3 const double Zeta1 = 28.95 * tarch::la::PI / 180.0;
4 const double Zeta2 = 44.09 * tarch::la::PI / 180.0;
5 const double Zeta3 = 31.81 * tarch::la::PI / 180.0;
7 const double Mu1 = std::tan(Zeta1);
8 const double Mu2 = std::tan(Zeta2);
9 const double Mu3 = std::tan(Zeta3);
11 constexpr double Beta = 1.07;
12 constexpr double Gamma = 2.01;
13 constexpr double BetaStar = 0.06;
14 // Kappa in the friction law is assumed to be 1 and is just initialised as a
15 // const double here using Kappa. The user can apply std::pow((Fr/BetaStar),
16 // Kappa) for evaluating T here in case the value of Kappa is different
19 constexpr double Kappa = 1.0;
20 constexpr double FrictionLengthScale = 0.00035;
22 const double Nu = (2.0 / 9.0) * (FrictionLengthScale / Beta) * (GRAV * std::sin(Zeta) / std::sqrt(GRAV * std::cos(Zeta))) * (((Mu2 - Mu1) / (std::tan(Zeta) - Mu1)) - 1.0);
23 const double Hstart = FrictionLengthScale * (((Mu2 - Mu1) / (std::tan(Zeta) - Mu3)) - 1.0);
24 const double Hstop = FrictionLengthScale * (((Mu2 - Mu1) / (std::tan(Zeta) - Mu1)) - 1.0);
Definition at line 4 of file FrictionLaws.py.