Peano
test.py
Go to the documentation of this file.
1 import peano4, exahype2
2 import os, sys
3 import argparse
4 import subprocess
5 import mpmath as mp
6 
7 sys.path.insert(0, os.path.abspath("../aderdg/"))
8 sys.path.insert(0, os.path.abspath("../aderdg/scenarios"))
9 import scenarios
10 
11 modes = {
12  "release": peano4.output.CompileMode.Release,
13  "trace": peano4.output.CompileMode.Trace,
14  "assert": peano4.output.CompileMode.Asserts,
15  "stats": peano4.output.CompileMode.Stats,
16  "debug": peano4.output.CompileMode.Debug,
17 }
18 
19 available_prec = {
20  "bf16", "fp16", "fp32", "fp64"
21 }
22 
23 available_scenarios = {
24  "AcousticPlanarWaves": scenarios.AcousticPlanarWaves(dimensions=2),
25  "AdvectionLinear": scenarios.AdvectionLinear(),
26  "ElasticPlanarWaves": scenarios.ElasticPlanarWaves(dimensions=2),
27  "EulerGaussianBell": scenarios.EulerGaussianBell(),
28  "EulerIsotropicVortex": scenarios.EulerIsotropicVortex(),
29  "SWERadialDamBreak": scenarios.SWERadialDamBreak(),
30  "SWERestingLake": scenarios.SWERestingLake(),
31 }
32 
33 parser = argparse.ArgumentParser(description="ExaHyPE 2 - ADER testing script")
34 
35 parser.add_argument(
36  "-md",
37  "--mesh-depth",
38  dest="md",
39  type=int,
40  default=3,
41  help="Depth of coarsest mesh level, i.e if 2 is specified there will be 9 cells per dimension",
42 )
43 parser.add_argument(
44  "-amr",
45  "--adaptive-levels",
46  dest="adaptivity_levels",
47  type=int,
48  default=0,
49  help="Number of AMR grid levels on top of hmax (0 by default)",
50 )
51 parser.add_argument("-o", "--order", dest="order", type=int, default=3, help="DG Order")
52 parser.add_argument(
53  "-p",
54  "--p",
55  dest="polynomials",
56  type=int,
57  default=1,
58  help="Polynomial type, 0 is Gauss-Legendre, 1 is Gauss-Lobatto",
59 )
60 parser.add_argument(
61  "-m", "--mode", dest="mode", default="release", help="|".join(modes.keys())
62 )
63 parser.add_argument(
64  "-pr", "--precision", dest="precision", default="fp64", help="|".join(available_prec)
65 )
66 parser.add_argument(
67  "-s",
68  "--scenario",
69  dest="s",
70  default=None,
71  help="|".join(available_scenarios.keys()),
72 )
73 
74 args = parser.parse_args()
75 
76 if args.s is None:
77  while True:
78  try:
79  s = input(
80  "Which of the following scenarios would you like to try out?\n"
81  + " - ".join(available_scenarios.keys())
82  + "\n"
83  )
84  scenario = available_scenarios[s]
85  except KeyError:
86  continue
87  else:
88  # User has specified a valid scenario
89  break
90 else:
91  scenario = available_scenarios[args.s]
92 
93 order = args.order
94 max_h = 1.1 * scenario._domain_size / (3.0**args.md)
95 min_h = max_h * 3.0 ** (-args.adaptivity_levels)
96 
97 polynomials = (
98  exahype2.solvers.aderdg.Polynomials.Gauss_Legendre
99  if args.polynomials == 0
100  else exahype2.solvers.aderdg.Polynomials.Gauss_Lobatto
101 )
102 
103 project = exahype2.Project(
104  ["tests", "exahype2", "aderdg"],
105  ".",
106  executable=scenario.__class__.__name__,
107 )
108 
109 solver = exahype2.solvers.aderdg.GlobalAdaptiveTimeStep(
110  name=scenario.__class__.__name__,
111  order=order,
112  min_cell_h=min_h,
113  max_cell_h=max_h,
114  time_step_relaxation=0.9,
115  unknowns=scenario._equation.num_unknowns,
116  auxiliary_variables=scenario._equation.num_auxiliary_variables
117 )
118 
119 solver.add_kernel_optimisations(
120  polynomials=polynomials, is_linear=scenario._equation.is_linear,
121  precision = args.precision
122 )
123 
124 solver.set_implementation(
125  initial_conditions=scenario.initial_conditions(),
126  boundary_conditions=scenario.boundary_conditions(),
127  max_eigenvalue=scenario._equation.eigenvalues(),
128  flux=scenario._equation.flux(),
129  ncp=scenario._equation.ncp(),
130  riemann_solver=scenario._equation.riemann_solver(),
131 )
132 
133 project.add_solver(solver)
134 
135 
136 
137 solver2 = exahype2.solvers.aderdg.GlobalAdaptiveTimeStep(
138  name=scenario.__class__.__name__+"2",
139  order=order,
140  min_cell_h=min_h,
141  max_cell_h=max_h,
142  time_step_relaxation=0.9,
143  unknowns=scenario._equation.num_unknowns,
144  auxiliary_variables=scenario._equation.num_auxiliary_variables
145 )
146 
147 solver2.add_kernel_optimisations(
148  polynomials=polynomials, is_linear=scenario._equation.is_linear,
149  precision = args.precision
150 )
151 
152 solver2.set_implementation(
153  initial_conditions=scenario.initial_conditions(),
154  boundary_conditions=scenario.boundary_conditions(),
155  max_eigenvalue=scenario._equation.eigenvalues(),
156  flux=scenario._equation.flux(),
157  ncp=scenario._equation.ncp(),
158  riemann_solver=scenario._equation.riemann_solver(),
159 )
160 
161 
162 
163 project.add_solver(solver2)
164 
165 from fuseADERSolvers import fuseADERSolvers
166 
168  solver, solver2,
169  "\nmarker.x()[0]<=(DomainOffset[0]+0.5*DomainSize[0]+0.51*marker.h()[0])\n",
170  "\nmarker.x()[0]>=(DomainOffset[0]+0.5*DomainSize[0]+0.49*marker.h()[0])\n"
171 )
172 
173 if scenario.analytical_solution() != exahype2.solvers.PDETerms.None_Implementation:
174  exahype2.solvers.aderdg.ErrorMeasurement(
175  solver,
176  error_measurement_implementation=scenario.analytical_solution(),
177  output_file_name="Error_" + scenario.__class__.__name__,
178  )
179  exahype2.solvers.aderdg.ErrorMeasurement(
180  solver2,
181  error_measurement_implementation=scenario.analytical_solution(),
182  output_file_name="Error2_" + scenario.__class__.__name__,
183  )
184 
185 
186 
187 project.set_output_path("solutions")
188 scenario.set_global_simulation_parameters(project)
189 
190 project.set_Peano4_installation("../../../", modes[args.mode])
191 project = project.generate_Peano4_project(verbose=False)
192 project.set_fenv_handler(True)
193 
194 project.build(make_clean_first=True)
Scenario reproduced from Dumbser & Käser, https://doi.org/10.1111/j.1365-246X.2006....
Very simple scenario in which the initial value of x is shifted in each spatial dimension.
Scenario reproduced from Dumbser & Käser, https://doi.org/10.1111/j.1365-246X.2006....
Scenario reproduced from Ioratti, Dumbser & Loubère, https://doi.org/10.1007/s10915-020-01209-w (p.
Scenario reproduced from Ioratti, Dumbser & Loubère, https://doi.org/10.1007/s10915-020-01209-w (p.
Classic radial dam break SWE equations, with constant initial water height but a bump in the bathymet...
Resting lake scenario for the shallow water equations.